Challenges and possibilities – stabilising timber buildings

Johan Vessby Linnaeus University, Växjö, Sweden

From rural log houses...

Architect: ?

Developer: 90% of people in Värmland

Many things have changed but some stay the same

- The load on the building and how it is transmitted to the foundation
- The effect the load have on the building
- Methods to prevent disturbing effects and failure

Schematic force distribution within a building

Structure Systems, Heino Engel

Divides structures according to how they resist horizontal loading.

Windaufnahme in Längs- und Querrichtung (bezogen auf Orundrisse der vorhergehenden Seite)

wind resistance in longitudinal and transverse direction (related to floor plans of preceding page)

How can we learn from... history and adopt?

Tension rods/trusses

Architect: Kresing Architekten, Münster

Frame

"Noaks Ark" from "Hundra år av rörelse, Smålandska Kulturbilder 2001"

Frame

"Big-frame", Sumitomo forestry group, Japan

Sheets

Mölnlycke, Derome förvaltning

Linnæus University

House N, Linnaeus Univeristy Moelven provided load bearing structure

Architect: Jais-Nielsen och Mats White

Vallen, Växjö

Architects: Arkitektbolaget and LBE Arkitekter Moelven provided load bearing structure

Vallen, Växjö

Architects: Arkitektbolaget and LBE Arkitekter Moelven provided load bearing structure

Load bearing timber glass composites, LBTGC

Prof. E. Serrano proj. leader

Deformation (Vector)

Sdur30_2.dyn

Date: 2014-02-20

Stage 0

Fully anchored

Prof. B. Källsner and U.A. Girhammar

Partially anchored

Anchoring by transverse walls

Linnæus University

Tie down rods

Reaction forces

Horisontalstabilisering av träregelstommar

Plastisk dimensionering av väggar med träbaserade skivor

Bo Källsner och Ulf Arne Girhammar

Concluding remarks

- There are several alternative ways of stabilising timber buildings (shear walls most common).
- Ensure ductile plastic behaviour in all fasteners.
- Avoid sudden losses in strength, e.g. fracture of members.
- The strength and stiffness of the horizontal diaphragm may need to be addressed.
- Methods should enable varying boundary condition in the leading stud.

