CLT - healthy, solid and cost-efficient

Jørgen Tycho – Massiv Lust AS

jorgen@massivlust.no

MASSIV LUST AS massivtre i Luster

4 departments

Architectural design

CNC-Formatting

Production

Mounting

Architectural design and CLT programing

High quality spruce from the Norwegian forest

Production

Engineered wood - Cross laminated timber

Flat-packed and Ready-to-assemble

High precision CNC milling

millimeter precision

Mobile mounting team

Mounting CLT and Glulam

Why we shall engage in the forest and timber constructions

The trees capture light energy and converts it to sugar energy, in the presence of chlorophyll, using carbon dioxide (CO_2) and water (H_2O). The tree release O_2 The carbon C remains in the tree. Photosynthesis is powered by sunlight.

- Trees are a natural and renewable resource
- Carbon trapped in the forest will be stored in the wood materials until combustion
- Young forest in good growth takes up a lot of CO₂, mature forest in a lesser extent, while overripe forest may increase CO₂ emissions
- Storing carbon in buildings is better than a forest dying on root
- Burning wood is climate neutral energy. This is because it emits just as much CO2 through the chimney into the air as the tree absorbed from the air when it grew in the forest
- Increased use of wood materials can reduce the use of materials such as concrete and steel

Global environment

 1 m^3 of wood stores 0,8 tons CO₂

A typical stud partition timber house contains approximately 14-20 m3 of wood, which is equivalent to 11 to 16 tons of CO_2 stored in the building mass

A cross laminated timber (CLT) house will store approximately 4 times as much. Typical 60m3 CLT = 48 tons of CO_2

An average Norwegian in 2014 emits over 5.7 tons of CO₂ annually.

Condition and potential in Norwegian forest industry today

Norway's land area: 31 million acres Norwegian forest area: 12 million acres Productive forest: 8 million acres

More than one third of Norway is covered by forest and one 4th is productive forest

Tree species distribution: 44% spruce, 31% pine and 25% hardwood

Standing timber volume in the Norwegian forests is now more than twice as large as 100 years ago, and there is now 912 million m3 of timber in our forests. An increase of about 50 percent in volume over the last twenty years.

skog+ landskap

Annual growth: 23,7 million m3 Annual logging: 7-9 million m3

We take out just over 1/3 of the annual increase in the Norwegian forest

Older mature forest covers 40% of our productive forest.

		1992		2012
Prefab plast	kr	4 252 432	kr	48 135 300
Prefab tre	kr	18 247 779	kr	896 203 565
Prefa hytter	kr	37 591 955	kr	887 669 430
Prefab stål	kr	182 672 773	kr	178 985 655
Prefab annet	kr	41 243 189	kr	503 037 730
Totalt	kr	284 008 128	kr	2 514 031 680

Import of prefab houses and building elements: An increase of 785% over 20 years!

71% of imported building elements are virtually pure wood products

What is CLT

Light and strong

The density of reinforced concrete is 2400 kg/m3

Nordic spruce has a mean density of > 450 kg/m^3 .

Relative to its weight wood is one of the worlds strongest building material

Building with CLT

Some examples

Semi-detached house in Bergen - 2013

Tight construction in 4 days

Ready to move in after 3 months

Ulsmåg School in Bergen - 2013

7000m2 school in CLT and Glulam

55 days effective mounting with 1 team

Woody15 cabin - 2014

18m2 - 3 hours

Digital print house -2014

900m2

Likevektsfuktighet (LVF) [%]: Den fuktighet trevirket innstiller seg på etter lang tid i luft med en bestemt temperatur og relativ fuktighet.

© Treteknisk

Equilibrium Moisture Content (EMC)

CLT mounting 15 days

Ready to move in after 4 months

CLT's superior properties

Speed	Hygroscopic	moisture bal	ancing Earthquake	airtight	
pollution bur Diffusion open	ffering Strength	Thermal า	decrement dela Econom	ay/PCM	
	F	ire resistant	Leonom	у	
Sustainability				Dynamic walls	
		Smell			
vapor diffusion resistance μ = 40-80			Тас	tile	
Aco	Smell sion resistance µ = 40-80 Acoustics Hygrothermal Water resistant				
λ = 0.13 W/mK		Water resistant			
				reproductive	
psychophysiological effect		millimeter precision			
			Vegetable	/Organic	

The nominal charring rate β_n , can be taken as 0.7 mm/min as is specified in Eurocode 5 Part 1-2, Table 3.1 for one dimensional charring.

R 30

Unexposed surface

R 60

R 90

Water

In Norway 83 000 water damages were reported to insurance companies in 2013.

That equals 3,4% off the total housing in the country

A thermal photograph of two of the CLT elements after submerged in water tanks for 48 hours. Colder areas (blue) have higher water content in the wood than warmer (yellow) areas. The elements have mainly absorbed water along their outer edges, leaving the middle of each element relatively dry.

Cross Laminated Timber vs. timber frame walls in water damage – comparing drying and mould growth **Kristine Nore, Ph.D.** - Norwegian Institute of Wood Technology, Norway

Element	Mould growth	
One week		
Timber framed element	Moderate growth	
CLT element	No growth	
Two weeks		
Timber framed element	Extensive growth	
CLT element	No growth	
Three weeks		
Timber framed element	Extensive growth	
CLT element	No growth	
Four weeks		
Timber framed element	Extensive growth	
CLT element	Sparse growth	

TABLE 1. Mould growth in the test elements after one, two, three and four weeks.

Cross Laminated Timber vs. timber frame walls in water damage – comparing drying and mould growth **Kristine Nore, Ph.D.** - Norwegian Institute of Wood Technology, Norway Temperature and relative humidity inside the test elements. The values for the CLT elements are average data from the three elements. The temperature delay for the CLT walls is due to their larger hygrothermal inertia.

Cross Laminated Timber vs. timber frame walls in water damage – comparing drying and mould growth **Kristine Nore, Ph.D.** - Norwegian Institute of Wood Technology, Norway

Hygrothermal property – the ability to absorb and desorb water

Simulation results

Automatically heated when needed by the wood surfaces present

Treoverflater gir energisparing - Fokus på tre -Kristine Nore, Ph.D. - Norwegian Institute of Wood Technology, Norway

Bathhouse 2013 www.massivlust.no

Bathhouse 2013 www.massivlust.no

Natural Ventilation and healthy indoor climate

Hygroscopic

Wood has a psychophysiological effect

Children who are taught in a room made of solid wood reduces heartbeats per day by 8,600. Equals 6 per minute.

How can we build up the layers of the house

Bearing

Insulating

Using 100% of the log

55% timber = Primary Structure and cladding45% GROT-wood chip and cutoff = Insulation, bioenergy and pulp

Wood in all layers

Dry construction 12% +- 2. Seasonal indoor air moisture equals 6 - 12% wood moisture content

Equilibrium Moisture Content (EMC)

Cost

The Norwegian Government's aim is that by 2020, all new buildings to be erected shall be close to zero emission buildings.

To achieve zero-emission buildings, it is essential to develop climateadapted building concepts and solutions based on renewable materials with low greenhouse gas emissions.

Wooden buildings is one of the responses to these challenges and the development of methods and proven solutions for various types of buildings for current and future generations is therefore of great strategic and market relevance for the parties involved.

How to reduce cost with CLT-element building

Spend 2/3 of project time on architectural- and engineering design + logistics = 1/3 of project time on building site

Use more time on the architect, the consultants and planning

Design and logistics are key to successful element construction. ALL details must be resolved BEFORE construction site.

Interaction between the different disciplines during the design phase

More interdisciplinary collaboration

Project-optimizing solutions

Leading to:

- reduced construction time
- Higher quality end product

If detailed correctly it might last for 1000 years.

Risa Meyer spiral staircase

YME store Oslo

Public benches in CLT - Oslo

http://lala.no/

SØK-PRO-UTF

MASSIV LUST AS massivtre i Luster

https://www.facebook.com/MassivLust

Jørgen Tycho

jorgen@massivlust.no